LRQA

NETTITUDE Tools v Tutorials v Training v Al

0= LABS 5° Careers Contact Nettitude.com

¥& CVEs

032451733

CVE-2017-18019: Privilege Escalation via a

Kernel Pointer Dereference Q Search.
By Kyriakos Economou | April 17,2019

A little while ago, | discovered a vulnerability, CVE-2017-18019,

affecting a kernel driver of multiple K7 Computing security products, as O

well as the products of Defenx, both for Windows. Both were affected Projects
because they were using the same anti virus engine, and both are now

patched. Check out our

latest projects
at
https://github.com/



PopularRecent

Pony malware
two years later
October 22,2015

Escaping the
Avast sandbox
April 19,2016

CVE-2017-
8116:

Teltonika
router
unauthenticate
remote code

execution
The proof of concept was based on an invalid kernel pointer June 20,2017
dereference, which led to a blue screen of death. That research and the
subsequent coordinated disclosure process were, at the time,
sponsored and handled by SecuriTeam. It turns out that the proof of
concept could be exploited further, and turned into local privilege
escalation. So, with the permission of SecuriTeam, | decided to create
a write-up of that local privilege escalation development process. X
Targeting
This article targets the following 64-bit Windows versions: Windows 7 Nothil‘]
SP1 - Windows 10 v1809. see hel

A Medium integrity level is required in order to exploit this vulnerability

yet

When they Twe
Tweets will sho'

in the way that is demonstrated through this article. In order to exploit
this from a Low integrity level, you will have to do extra work in order
to leak some kernel pointers. This can be done either though other
IOCTLs handlers of the target driver itself, or through other Windows

driver kernel memory leak bugs.

Bug Analysis

The root cause of this issue is that the author of the following function

trusts a pointer to read data from, originating from a user-supplied



input buffer, as long as it references an address inside the kernel
address space.

The vulnerable function fetches a pointer from the IOCTL’s input buffer
and checks if it is greater or equal to nt!MmHighestUserAddress
(Ox0000T7ffffffeffff in x64). If that’s true, then the function will proceed
by dereferencing that pointer and evaluating the first byte located at
that memory address.

Clearly, the purpose (even though the implementation is buggy) of this
check is to verify that the pointer address from where further
information will be read resides in kernel memory of which, from the
developer’s perspective, its virtual address and contents are not
supposed to be known and controlled by the user. This, of course, is
not entirely true because kernel object addresses may be leaked, and
also they may reference directly or indirectly user-supplied data.

The following screenshot shows (in grouped nodes) what we described

above.

PIE

FFE

FE

Figure 1 - Verify it is a kernel pointer.



We can easily crash the host by supplying an arbitrary kernel pointer
that references a non-allocated memory page.

The following image shows the output from Windbg the moment the

memory access violation occurs.

Figure 2. Arbitrary kernel pointer dereference.

Further Analysis

What we know at this point is that we have a denial of service bug that
can be triggered by any user in order to crash the host. So, we analysed
this function further in order to find out if there is something more that
we can do with it.

The following graph-view screenshot continues directly from what is

shown in Figure 1.

FPE

Figure 3. Kernel memory buffer data checks.



Assuming that RCX points to a valid kernel address where the first byte
is 0x4B, so that the previous check succeeds (cmp byte ptr [rcx], 4Bh),
we arrive at the second part of the vulnerable function as shown
above.

Here we notice further byte value checks, and specifically the second
byte of the buffer referenced by RCX should be 0xFF in order to access

the final part of our analysis.

e

call FuncPtr

Figure 4. Arbitrary Function Pointer Call.

A couple of pointer dereferences later, we see that the function is
treating the last one as a function pointer. We also notice that the first
and second parameters passed to RCX and RDX respectively can also
be controlled.

To be more specific, the first parameter is taken from the buffer
referenced by the arbitrary kernel pointer that we control, and the
second one is pointing inside our user-input buffer that is defined

through the call to DeviceloControl function.

Setting things up

At this point, we have all the information we need in order to proceed
with the exploitation of the vulnerability. To do that, we must know the
address of a kernel object and also control its contents, to a certain
extent. As we discussed, the initial pointer from where the rest of data
is read leading to a function pointer called, must reference an address

inside the kernel address space. This is also the developer’s



assumption around the safety of that decision.

In a previous article we talked about Private Namespaces and the
ability to insert user-defined data in the body of the associated kernel
object. We will be using this type of objects in order to exploit the
vulnerability, as they can be used reliably in this case as well.

In order to exploit this vulnerability, we will be using two kernel objects
of the aforementioned type. The first object will be used for controlling
the subsequent pointer dereferences that allow us to call an arbitrary
function pointer, while the second object will be used in order to
control the initial kernel pointer check that must reference a known

kernel object in memory (first object).

Exploitation in Windows 7 SP1 x64

In the absence of exploitation mitigation such as SMEP (Supervisor
Mode Execution Protection), taking advantage of this vulnerability is
quite straight forward. We can execute our payload function in
userland without taking any additional steps, such as temporarily
disable SMEP. We just need to control the instruction pointer and that
would be enough.

To start with, we will create a Private Namespace object using a
random boundary name and we will use NtQuerySystemInformation

function to leak its address.

5 0
03054080
"03054090

0°030540a0
"030540b0 ¢
030540c0
0540d0
"030540e0 (
030540f0
"03054100
'03054110
103054120

54130 C

'03054210 47
103054220 02
03054230 00 (

Figure 5. 1st Object (Win7 SP1 x64).

Then, we will create another object of the same type with a crafted
boundary name.
The first and second bytes must be 0x4B and OXFF respectively (see

Figures 1 and 3) to satisfy the byte value checks. Also, in the offset 0x0A



(Figure 4 —first pointer dereference) of the crafted boundary name, we

will be inserting the address of the first object + the distance in bytes

(0x1a0) between that address and the location of the boundary name

in that object + an arbitrary offset (0x1A) that contains a value that can

be translated to a userland pointer, which satisfies the proof of concept

for this version of Windows. Note that we take into account that at the

result

of the previous calculation, the value 0x0C will be added in order

to reach the userland pointer value (Figure 4 - second pointer

dereference).

8a0 0244450 00
0244450
02444600
02444610
444620

TEfff
TTTfTea0
fEfffea0

FTTFF8a0"
FTFFFEa0”

FEFFF8a0

FEFFFga0;
FFFFF8a0;

02444630
0244, 0
02444650

FETFF8a0’
FTFFFEa0’

FEEFFEa0”
FrEffea0;
FFFFFEac0
FEFFFEac0

FEEFFEa0

FEEffea0;
FrEffaac
FFFFFEac0
FEFFFEac0;
FrEffEa0
FrEffea0’
FFFFFEa0
FEFFFEac

02444690
024446a0
024446b0
0244460
0244,
0244460
024446f0
02444700
02444710
02444720
024447

Trfffea0’

FEEFFBa0

TTIff8al’
fffffgao’
fffffga0’
FHfffea0’
fFHfffeao’

02444770
02444780 49 c 49
02444790 9 . « ZLINYNE
024447a0 5

024447b0

Figure 6. 2nd Object (Win7 SP1 x64).

o0
00

0 0 00
00 00 O C 00
0 00 00 0 00 00 0
C 00
of

0 00

4.4, 02
024447b0 00 00 00

Figure 7. Objects Interconnection (Win7 SP1 x64).

Finally, we can see the function pointer being called, in order to



execute our payload at address 0x1010000.

‘Ollaadd2? 4885c0 Test rax,rax
"Ollaadd5 7476 je K7sentry+0xBedd (FFfff880 01llaaedd)

“0l11laaddb 4d85d2 test
‘Ollaadde 746d je < ry+0x8edd (fffff880° 011laaedd)
‘Ollaade0 488b4902 mow T word ptr [rcx+2]

"O1laaded 4489442420 mo ptr [rsp+20h],r&d
‘0l1laade9 4cBbce mov
‘Ollaadec 458bcS mov
‘0l1laadef 498bd4 mov

“011aadf5 85c0
‘0Ollaadf? 7454

Figure 8. Call Payload-Function Pointer (Win7 SP1 x64).

Exploitation in Windows 8.1 - 10 v1809 x64

In more recent Windows versions, exploiting a kernel driver bug is
more challenging due to exploitation mitigations that have been
added. In this case, we take control over the execution flow by calling
an arbitrary function. However, due to the SMEP we are not able to
directly execute code that resides in the user address space from kernel
mode, so we will have to take another approach.

A common solution is to attempt to temporarily disable SMEP by
clearing the 20th bit in CR4 register of a specific processor and lock our
threads execution to only run on that one, so that we can execute our
payload in userland as before. However, we would have to restore CR4
in order to avoid KPP (Kernel Patch Protection/PatchGuard) killing the
host.

Another way, which we will be using in this write-up, is to take
advantage of the execution flow control in order to turniitinto a
“write-what-where” primitive, which will enable us to modify arbitrary
data in kernel memory. Once that is achieved, there are, again, two
common ways of taking advantage of this in order to elevate our
privileges.

The first method is to overwrite with a NULL value the SD (Security
Descriptor) pointer in the object header of an elevated process running
as SYSTEM. This will allow a non-privileged process to inject and
execute malicious code in the same security context. However, this
method will only work up to Windows 10 v1511 (Build 10586), as
described in this article.

Another way to take advantage of a “write-what-where” primitive is to
enable privileges in the primary token of a non-privileged process in
order to enable it to again inject and execute code in the security

context of a process running as SYSTEM. This method still works fine,



but it requires a minor modification from Windows 10 v1709 (Build
15063) onwards, as described here. What we are about to describe here
can also be used in Windows 7.

Going back to what we have described so far, we have noted that we
are also able to control the first two parameters (see Figure 4) passed in
RCX and RDX respectively, once our arbitrary function is called. We are
going to take advantage of this capability in a moment.

In this case, we first need to leak the address of the primary token of
our process, where will be enabling additional privileges. We will be
using that address as the target of our exploitation primitive. As in
Windows 7, NtQuerySysteminformation can be used for the same
purpose from the standard ‘Medium Integrity’ of a user process in order
to leak the kernel object and function addresses that we will be using.
We will then create our first Private Namespace object with a custom
boundary name, where the first 8 bytes will be set to the kernel address
that we will be using as our ‘gadget’ to modify arbitrary kernel data.
So, instead of executing a payload in userland, we will be redirecting
the execution to kernel function, nt!RtICopyLuid that will enable us to

modify arbitrary kernel data.

nt!RT (CopyLulid:

ffFFf805 035956e0 488h02 mowv rax ord ptr [rdx]

. Ow
fffff805°035956e3 488901 mow qwurg ptr [rex],rax
fFFffB05°035956e6 3 ret

Figure 9. nt!RtlCopyLuid.

Since we control both the RCX and RDX registers, we can use this
function to complete our “write-what-where” primitive.

We will be needing, again, a second Private Namespace object with a
custom boundary name which at offset 0x0A of the name data (Figure
8 - first pointer dereference) must contain the address of the first
object + the distance in bytes (0x1a0) between that address and the
location of the boundary name in that object. Remember that at the
first 8 bytes of the boundary name of the first Private Namespace
object, we have inserted the address of nt!RtlCopyLuid. Note that as
before, we must take into account that at the result of the previous
calculation, the value 0x0C will be added in order to reach our arbitrary
kernel function pointer value, loaded at the R10 register (Figure 8 -

second pointer dereference).



So, this is how it should look:

*(ULONG_PTR*) (boundaryName + Ox0A) =
customPrivNameSpaceAddress +
boundaryNameOffsetInDireObject - 0x6C;

Then, we need to take control of the first two parameters.

The first parameter loaded in RCX is read again from our custom
boundary name, at offset 2 (the first two bytes of our custom boundary
name must be 0x4B,0xFF). So, we will be setting there the address of
our process’ token object + the offset (0x40) to reach the

nt!_SEP_TOKEN_PRIVILEGES structure member.

kd> dt nt!_SEP_TOKEN_PRIVILEGES
+0x000 Present : UintBB

+0x008 Enabled : Uint8B
+0x010 EnabledByDefault : Uint8B

Figure 10. nt!_SEP_TOKEN_PRIVILEGES.

It should look as follows:

*(ULONG_PTR*) (boundaryName + 0x02) = tokenAddress +
Ox40;

Finally, we can also control RDX since the value of R12 is copied over,
which points at the address of our userland input buffer + 0x10 (see
Figure 1 - th node). This is where we read the data from, to write into
an arbitrary kernel address. In this case we will overwrite the ‘Enabled’
and ‘Present’ privileges members of the aforementioned structure
(Figure 10).

It should look like this:

*(unsigned ___int64*)(inputBuf + 6x10) = _ULLONG MAX;
So, our exploit will have to reach the vulnerable function twice in order

to complete the attack.



F tion (Call R10)

a0
¢|00 00

Figure 11. Objects Interconnection - Write-What-Where Primitive.

The image above shows how the two objects are ‘interconnected’ in
order to complete our “write-what-where” primitive to finalize the

exploit.

Conclusion

This was an interesting bug to examine and exploit, as it shows once
more that no input data should ever be blindly trusted. From the
developer’s perspective, trusting a kernel pointer to read data from,
presumably out of user’s control, was a ‘safe’ decision to take.
However, it turned out to become a serious vulnerability in multiple

products of two different vendors that use the same SDK.

Share This Story, Choose f v
Your Platform! t 7

Related Posts



