
NDI5aster
Privilege Escalation through NDIS 5.x Filter

Intermediate Drivers

KYRIAKOS (kyREcon) ECONOMOU

Last updated date: 29/04/2017



Contents 1

C O N T E N T S

Abstract 2
1 Introduction 3
2 NDIS 5.x 3

2.1 Protocol Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Miniport Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Intermediate Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Registering an NDIS 5.x Protocol Driver 6
4 Registering an NDIS 5.x Intermediate Driver 7
5 wanarp.sys - Protocol Registration 8
6 ESET - Epfwndis.sys 9

6.1 Driver Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.2 ProtocolBindAdapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.3 Triggering the vulnerability . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.4 Leaking NdisWanIp Device Context Kernel Pointer . . . . . . . . . . . . . . 16
6.5 Privilege Escalation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Vendors Affected 18
8 Conclusion 19
9 Acknowledgements 19
References 20



Contents 2

A B S T R AC T

The Network Driver Interface Specification (NDIS) [11] provides a programming interface
specification that facilitates from the network driver architecture perspective the communica-
tion between a protocol driver and the underlying network adapter. In Windows OS the so
called "NDIS wrapper" (implemented in the Ndis.sys) provides a programming layer of com-
munication between network protocols (TCP/IP) and all the underlying NDIS device drivers
so that the implementation of high-level protocol components are independent of the net-
work adapter itself. During vulnerability research from a local security perspective that was
performed over several software firewall products designed for Windows XP and Windows
Server 2003 (R2 included), an issue during the loading and initialization of one of the OS
NDIS protocol drivers was identified; specifically the ’Remote Access and Routing Driver’
called wanarp.sys. This issue can be exploited through various NDIS 5.x filter intermediate
drivers [4] that provide the firewall functionality of several security related products. The
resulting impact is vertical privilege escalation which allows a local attacker to execute code
with kernel privileges from any account type, thus completely compromising the affected
host.
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1 I N T R O D U C T I O N

Security software should provide security. This is what makes research over those bits and
bytes slightly more interesting than researching on other software types. The impact is not
necessarily greater, since other more mainstream applications might be more widely used and
commonly installed, but the word ’security’ is what makes them really attractive to us. On
the other hand, we have Windows XP, which was recently abandoned by Microsoft in terms
of security patching which means all the ’goodies’ that we can find there, will also probably
stay there forever. Unless Microsoft decides to jump back and apply new patches, we can
safely say that "what happens in XP stays in XP".

However, Windows Server 2003, which is also affected by the examined issue, was still
officially supported by Microsoft at the time of writing this paper. Although, XP operating
system is not supported anymore by the vendor it is still quite widely used internally in
many companies, and especially Windows Server 2003 R2. These hosts might run important
infrastructure software that might not be supported anymore by its vendor. At the same time
the migration to a newer platform and finding the right software to rebuilt those systems with
the same capabilities might be extremely time and money consuming. In a fair attempt to
harden their security, system administrators will install some security software on them. This
quite often implies installing some AV security suite that provides malware detection and
elimination, as well as some extra firewall capabilities.

Based on the aforementioned facts, this research aims to bring some awareness about a well
hidden for years issue that even though is not really a bug by definition, it can be exploited
through NDIS 5.x network intermediate drivers used by software firewalls to filter network
packets [4]. Upon exploitation, it allows a local attacker to elevate his privileges and obtain
complete access on the compromised host. This can later lead to a total compromise of
the network infrastructure through common post-exploitation techniques, such as obtaining
important cached credentials through hash dumping or live credentials residing in memory.

2 N D I S 5 . X

The NDIS acronym refers to the Network Driver Interface Specification [11] which defines
the way network protocols communicate with the underlying network adapters. It provides
a set of routines that allow the network drivers that implement protocols to communicate
with the NDIS wrapper instead of directly accessing the Network Interface Card (NIC) NDIS
driver as seen in Figure 1.

This allows the protocol implementation to be independent from the NDIS miniport device
drivers. The research focused on NDIS 5.x which is the major version of the NDIS wrapper
that was primarily introduced in Windows 2000 (NDIS 5.0) and later improved in Windows
XP (NDIS 5.1) kernel based operating systems.

Figure 1: NDIS Wrapper Architecture
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Before going into the details of the discovered vulnerability, the way it can be exploited,
and under which circumstances, it is important to provide an insight of the types of NDIS 5.x
drivers that are available.

2.1 Protocol Drivers

These drivers are used to implement network protocols [6]. They are located at the highest
position in the NDIS hierarchy of drivers and they are used as the lowest-level drivers when
implementing a transport driver and the associated protocol stack such as the TCP/IP stack.
These drivers also need to implement an interface in order to receive incoming packets from
the next driver in the stack bellow them and in case of a transport protocol driver, the driver
needs to transfer the incoming data to the appropriate application as well. At its lower edge,
a protocol driver provides an interface of communication with an underlying intermediate
driver, if there is one, or with a miniport driver that is the one that communicates with the
physical device. At its upper edge, a protocol driver interfaces with a higher-level driver
which makes part of the protocol stack.

Protocol drivers import NdisXxx functions (’Xxx’ is being used throughout this paper as a
function name placeholder) that are used to perform various operations, such as sending pack-
ets, setting information that needs to be maintained by lower-level drivers, as well as making
use of specific services provided by the operating system. Furthermore, protocol drivers also
export ProtocolXxx functions that the NDIS wrapper uses to perform operations on behalf of
lower-level drivers. These might be indicating the receiving of packets, retrieving informa-
tion about the status of a lower-level drivers and in general allowing NDIS to communicate
with the protocol driver.

2.2 Miniport Drivers

These are the NDIS device drivers that communicate with the network adapters (NIC devices)
at their lower edge, while at their upper edge they provide an interface of the lower edge of
protocol drivers [10]. Miniport and protocol drivers are essential components of an NDIS
driver stack. Figure 2 demonstrates from a high-level perspective how these relate to each
other and with the NDIS wrapper [3].

Figure 2: NDIS Driver Stack
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2.3 Intermediate Drivers

As their name suggests, these NDIS drivers are located between the protocol drivers and the
miniport drivers [3]. These drivers are not essential components of an NDIS driver stack
unless there is a need for parsing, filtering, logging for security or any other purpose that
requires some sort of processing of the data that travels between the higher level protocol
drivers and the lower miniport drivers that control physical devices. In order to achieve
this purpose, intermediate drivers expose a protocol driver interface on their upper edge and
miniport driver interface at their lower edge which in this case is called virtual miniport. It
is called ’virtual’ because it does not actually control a physical device. Instead, it has to
interface with the underlying miniport driver which is the one that actually controls the NIC
device. Figure 3 shows an example of an NDIS driver stack where an intermediate driver is
loaded in between the protocol driver and the miniport driver[3]. However, it is possible that
more than one intermediate drivers are loaded at the same time in an NDIS driver stack.

Figure 3: NDIS Driver Stack with an Intermediate Driver

It is important to mention that in NDIS 5.x more than one miniport drivers can be bound to
lower protocol edge of an intermediate driver[11]. In that case, the intermediate driver needs
to expose an equal amount of virtual miniports on its upper edge so that higher-level drivers
or intermediate drivers can interface with them via their lower protocol edge.

Figure 4: One-to-one relationship between miniport drivers and virtual miniports

There are two types of this category of NDIS drivers. The NDIS filter intermediate drivers,
and the MUX intermediate drivers. The former ones are those that are used in many fire-
wall, VPN, and other networking related software products built over the NDIS 5.x for the
Windows XP and Windows Server 2003 operating systems.
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2.3.1 External & Internal Bindings

As we have already discussed, intermediate drivers can bind with other drivers or other inter-
mediate drivers. These bindings [3] are controlled by the NDIS wrapper and for this reason
they are called external bindings. However, intermediate drivers bind their own protocol edge
and virtual miniport edge internally. These are called internal bindings because they are not
controlled by NDIS and their implementation can be completely custom and vendor specific.
Figure 5 demonstrates the internal binding between the virtual miniport and the intermedi-
ate driver’s protocol interface. We can also observe this characteristic in Figure 4 on the
preceding page .

Figure 5: Internal Binding

Now that we have finished with a short overview of the NDIS 5.x drivers, we will proceed
with some additional information about protocol and intermediate drivers which is necessary
to mention in the context of this research in order to understand later the root of the issue that
motivated the writing of this paper.

3 R E G I S T E R I N G A N N D I S 5 . X P R OTO C O L D R I V E R

On loading, an NDIS protocol driver needs to register its ProtocolXxx functions by calling the
NdisRegisterProtocol function (see figure 6) from inside its DriverEntry which is basically
the standard entry point function name for a kernel mode driver that is recognized by the
loader [6]. The handle that will be stored as NdisProtocolHandle after a successful call to the
aforementioned function must be preserved by the driver since it will be later needed in other
calls to NDIS functions.

Figure 6: NdisRegisterProtocol

However, before calling the NdisRegisterProtocol function, the driver needs to zero-initialize
the NDIS_PROTOCOL_CHARACTERISTICS structure in order to ensure that any unused
members are set to NULL. Even though following this good practice can later help a caller to
check if a function pointer in this structure is initialized or not, this is not enough as demon-
strated later in this paper. Once the structure has been zero-initialized, the driver also needs
to set the NDIS version with which the protocol is compatible. Finally, the driver needs to set
accordingly the function pointers of the necessary and optional ProtocolXxx functions that the
driver exports. Once this final step is done, the driver is ready to call the NdisRegisterProtocol
function.

Figure 7 on the following page shows the NDIS_PROTOCOL_CHARACTERISTICS struc-
ture definition.
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Figure 7: NDIS_PROTOCOL_CHARACTERISTICS structure

4 R E G I S T E R I N G A N N D I S 5 . X I N T E R M E D I AT E D R I V E R

During initialization, an NDIS intermediate driver needs also to perform a few calls to some
NDIS functions in the context of its DriverEntry function in order to register its MiniportXxx
functions and its ProtocolXxx functions in case it has to bind to a lower-level NDIS driver.
As a first step, the intermediate driver needs to call NdisMInitializeWrapper in order to notify
NDIS that a new miniport driver is currently initializing [8].

Figure 8: NdisMInitializeWrapper

The handle stored in NdisWrapperHandle will be later used as parameter to other calls
of NDIS functions (Figure 8). Assuming that this first action was successful, the intermedi-
ate driver will subsequently call NdisIMRegisterLayeredMiniport through which will register
with NDIS the entry points of the MiniportXxx functions that it exports.

If the driver has to bind to a lower level NDIS driver, then it will also call NdisRegisterPro-
tocol in order to register the entry points of the ProtocolXxx functions that it exports [9].

There is a particular interest in the third parameter of this function which is a pointer to
a NDIS_PROTOCOL_CHARACTERISTICS structure (see figure 7), which as you can see
stores the pointers to functions that need to handle certain events. The RECEIVE_COMPLETE_HANDLER
member of this structure is of a particular interest since it is root cause of the issue we are
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Figure 9: NdisIMRegisterLayeredMiniport

Figure 10: NdisRegisterProtocol

about to examine. Finally, the intermediate driver needs to call NdisIMAssociateMiniport.
This is done in order to inform NDIS that the specified protocol and miniport interfaces, ref-
erenced by the handles passed as parameters to this function (see figure 11) belong to the
same intermediate driver.

Figure 11: NdisIMAssociateMiniport

To be more specific, the DriverHandle is the handle to the miniport interface returned by
NdisIMRegisterLayeredMiniport, and the ProtocolHandle is the one returned by NdisRegis-
terProtocol function. In cases where the intermediate driver is bound to more than one mini-
port drivers (see section 2.3 on page 5), then it has to call NdisIMInitializeDeviceInstanceEx
for every virtual NIC that makes available so that higher level protocol drivers can bind to it
and send network requests.

5 WA N A R P. S Y S - P R OTO C O L R E G I S T R AT I O N

This NDIS protocol driver of Windows OS is described as the ’Remote Access and Routing
ARP Driver’. To be more specific, the wanarp.sys (v5.1.2600.5512) file under examination
is part of an a XP SP3 32-bit installation. The root cause of the issue that we are about
to exploit is located in the registration stage of the protocol itself which in this case occurs
inside the wanarp!WanpInitializeNdis function. During this stage, a protocol driver needs to
initialize a NDIS_PROTOCOL_CHARACTERISTICS structure (see figure 7 on the previous
page) with pointers to the ProtocolXxx functions that it exports. This structure is correctly
zero-initialized and then valid pointers are stored to the necessary members for this protocol.
However, something is about to go wrong. Really wrong! Let’s take a look at the following
figure.

Figure 12: wanarp.sys - Protocol Functions Registration
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All these are valid pointers, however let’s examine closer the highlighted pointer that is
passed to the RECEIVE_COMPLETE_HANDLER member.

Figure 13: wanarp!WanNdisReceiveComplete

The pointer passed to the aforementioned member points to a legitimate function Wan-
NdisReceiveComplete, (see figure 12 on the preceding page) inside the wanarp.sys module.
Notice that the only thing this function does, is basically to call a function through a pointer
stored in wanarp!g_pfnIpRcvComplete dword (see figure 13) located in the .data section of
the module at RVA1: wanarp + 0x5FB4.

Figure 14: wanarp!g_pfnIpRcvComplete

As we can see in figure 14, the g_pfnIpRcvComplete pointer is NULL which means that
WanNdisReceiveComplete is basically performing a Call 0x00000000. In Windows XP and
Server 2003 based systems allocating the NULL page is not a problem at all, but first we need
to find a way to control a call to that function.

6 E S E T - E P F W N D I S . S Y S

This issue initially caught our attention while looking for vulnerabilities in the latest (at the
time) ESET ’Smart Security’ product for Windows XP (SP3). Later on it was proved that
their latest ’Endpoint Security’ product for Windows Server 2003 was also vulnerable to
privilege escalation through the same attack type, along with other similar products from
other vendors. Although, this is not a vulnerability caused by a programming error, we can
categorize the fact that a driver allows us to trigger it as a design error that produces a ’trusted
value vulnerability’ situation, as we are going to see in detail. The analysis that follows is
based on the Epfwndis.sys v7.0.206.0 also known as ’ESET Personal Firewall NDIS filter’.

6.1 Driver Initialization

As it has been discussed in section 4 on page 7, an NDIS intermediate driver needs to perform
some necessary steps during initialization. We notice the call to NdisInitializeWrapper2 at
address Epfwndis + 0x90C7 (see figure 15).

Figure 15: Epfwndis - Call NdisInitializeWrapper

The declaration of this function has been provided already (see figure 7 on page 7), so we
know that the NdisWrapperHandle is going to be stored at Epfwndis + 0x706C. This handle

1 Note: The reason why in some cases it is preferable to refer to relative virtual addresses (RVA) has to do with
the fact that during the writing of this paper different instances of the OS during the drivers’ loading stage have
been examined. This means that a virtual address (VA) referring to the same location in a loaded module might
change on each reboot, but the RVA will not. All of the RVAs mentioned are calculated using the image base of the
corresponding module as a reference.

2 Note: In this case the driver is calling NdisInitializeWrapper instead of NdisMInitializeWrapper (see figure 8 on
page 7). According to MSDN, this is an obsolete function that only exists to support legacy NDIS v3.0 drivers and
normally shouldn’t be used for NDIS 4.0, NDIS 5.0 drivers and NDIS 3.0 miniport drivers [7].
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is important since it is going to be needed later for other calls to NDIS functions. The next im-
portant step, and as expected from what we have already discussed (see section 4 on page 7),
the ESET driver is going to make a call from address Epfwndis + 0x91F6 to NdisIMRegis-
terLayeredMiniport (see figure 9 on page 8) which is necessary in order to register the entry
points of the exported MiniportXxx functions, as shown in the figure that follows.

Figure 16: Epfwndis - Call NdisIMRegisterLayeredMiniport

Once the previous step has be accomplished, the driver will now register its ProtocolXxx
functions with a call to NdisRegisterProtocol from adress Epfwndis + 0x92E8.

Figure 17: Epfwndis - Call NdisRegisterProtocol

In the figure above, the pointer stored in the BindAdapterHandler member of the NDIS_PROTOCOL_CHARACTERISTICS
structure has been intentionally highlighted. This function will be later used as a callback by
NDIS in order to bind the current driver to the underlying NIC drivers. This is called Pro-
tocolBindAdapter function (see section 6.2) and it is used in order to support plug and play,
hence it is called whenever a NIC where the protocol can bind itself becomes available. In
this case the function that will handle this purpose on behalf of this ESET driver, is located
at Epfwndis + 0x2A00. The next important function that is called is the NdisIMAssociateM-
iniport (see figure 18), which serves to inform NDIS that a specific protocol and miniport
interfaces, they both belong to the same intermediate driver (see section 4 on page 7).

Figure 18: Epfwndis - Call NdisIMAssociateMiniport

6.2 ProtocolBindAdapter

We are about to examine the steps that are taken during the binding between Epfwndis and
other underlying NDIS drivers. As mentioned earlier, the amount of times that the Protocol-
BindAdapter function is going to be called it depends also on the amount of existing active
network adapters. The first important call is to NdisOpenProtocolConfiguration from address
Epfwndis + 0x2A9C (see figure 19 on the following page). This function returns a handle to
the registry key where the per-adapter information of a protocol driver is stored.

The first underlying registered adapter that is going to bind to, is the NDISWANIP as shown
in the following figure.
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Figure 19: Epfwndis - Call NdisOpenProtocolConfiguration

Figure 20: Binding to NDISWANIP

The retrieved handle from the previous call is going to be used immediately after, to call
NdisReadConfiguration from address Epfwndis + 0x2AC2.

This is done in order to obtain the value of a named entry belonging to the previously
opened registry key. The entry it is about to examine is called "UpperBindings". The data
is returned to an NDIS_CONFIGURATION_PARAMETER structure which is defined in the
following figure.

Figure 21: BNDIS_CONFIGURATION_PARAMETER structure
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Figure 22 shows an example of the data returned in this case.

Figure 22: Data returned through a call to NdisReadConfiguration

The device name identifier shown in the figure above refers to the virtual miniport instance
created for the NDISWANIP (miniport driver) adapter. We can also verify this setting by
looking at the registry.

Figure 23: Virtual miniport identifier for NdisWanIp

As a next step, Epfwndis will call NdisAllocateMemoryWithTag in order to allocate some
memory and save that information in a nonpaged tagged pool buffer. This is also helpful for
us to know since we can use it at any point to find other memory blocks allocated with that
specified third-party pool tag which is the "aPmI" (see figure 24).

Figure 24: aPmI tagged nonpaged pool buffer

Once the previously retrieved data (see figure 22) has been stored in the allocated buffer, a
call to NdisAllocatePacketPool will take place. This used in order to allocate some memory
to store packet descriptors. However, it also returns a handle to the allocated pool; in this case
the pointer supplied to store that handle points inside the previously allocated "aPmI" tagged
buffer. Then, NdisAllocateBufferPool is called to allocate some memory to store other buffer
descriptors. Again, this will also return a handle to the previously allocated "aPmI" tagged
buffer.

However, in some Windows versions a NULL returned handle value is valid. The call to
NdisAllocateMemory that follows immediately after at Epfwndis + 0x2BEA is quite important.
The base address of the allocation will also be stored in the familiar to us "aPmI" tagged buffer
and it will point to the device name (see figure 25 on the following page, side note 2). The
"aPmI" tagged buffer is going to be used as a context area to store per NIC device run-time
state information for each of those that the intermediate driver under examination exposes
a virtual miniport. At this stage we can examine the contents of the aforementioned tagged
buffer.
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Figure 25: aPmI tagged buffer Stage1

We can also see the device name copied at this point to the allocated context area that will
keep some per NIC device run-time state information (see figure 26).

Figure 26: Device name

Some more data is going to be copied back into the "aPmI" tagged buffer, and finally
NdisOpenAdapter will be called in order to set up the binding between the protocol edge
of Epfwndis and NdisWanIp. Our tagged buffer will now serve as a context area to main-
tain information about the state of the binding once it is established. Let’s see what other
information is now stored there.

Figure 27: aPmI tagged buffer Stage2

At this stage, Epfwndis will trigger the process of initializing the virtual miniport by call-
ing NdisIMInitializeDeviceInstanceEx (see figure 28 on the following page) from address
Epfwndis + 0x2DA0.
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Figure 28: NdisIMInitializeDeviceInstanceEx

We can see that this function accepts three parameters, which are:

1. DriverHandle: handle returned by NdisIMRegisterLayeredMiniport
2. DriverInstance: Points to the NdisWanIp virtual miniport identifier

("\Device\46EB13C3-CA50-41B2-A9ED-B04DB4301056")
3. DeviceContext: Points to our "aPmI" allocated buffer which is used as a context area

to keep information about a NIC device bound with the Epfwndis driver.

The number of "aPmI" allocated buffers depends on the amount of compatible adapters
enabled in the host. If all adapters were disabled, we noticed that EpFwndis would only go
through this process for NdisWanIp. Note that in figures 26 on the previous page and 27 on
the preceding page, the pointer corresponding to side note two was only pointing to the same
device name placed in another buffer. As we mentioned, the important information about the
binding of any underlying miniport drivers is kept in the "aPmI" allocated buffers.

6.3 Triggering the vulnerability

When we started analyzing the EpFwndis driver by looking at the exposed I/O Control Re-
quest Codes (IOCTLs) [1] that can be used from userland in order to communicate with a
kernel device driver using the DeviceIoControl function [2]. We managed to initially control
the EIP by using IOCTL 0x830020CC and matching the necessary requirements regarding
the contents of the input buffer.

A subroutine located at address Epfwndis + 0x43f6 (see figure 29) is called when process-
ing this specific IOCTL. Its purpose is to parse a list of "aPmI" tagged buffers allocated by
EpFwndis. Each one of them serves as context area to keep information about a specific
adapter that is bound to this ESET driver. The interesting part during this stage is that the
driver will read a pointer from our input buffer which we control from userland and then will
try to see if it matches any of the entries in the aforementioned list.

Figure 29: Parsing aPmI tagged buffers list
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Figure 29 on the preceding page includes a dummy pointer (0x90909090) which of course
wouldn’t match any of the allocated "aPmI" tagged buffers, but it clearly shows that we can
control this parameter from userland. If a match is found, then on completion of this request
the protocol function registered as RECEIVE_COMPLETE _HANDLER in the correspond-
ing NDIS_PROTOCOL_CHARACTERISTICS structure for that driver will be called. In
our case, if the pointer matches the "aPmI" tagged buffer that keeps information about the
NdisWanIp, then wanarp!WanNdisReceiveComplete is going to be called with the following
results.

Figure 30: EIP == NULL
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The execution flow was transferred at address 0x00000000 which was not allocated and
this caused our system to crash.

Let’s see what other information Windbg [5] can provide to us.

Figure 31: Call stack trace

In figure 29 on page 14 we notice that the execution flow was transferred on the NULL
page after calling wanarp!WanNdisReceiveComplete. The return address was expected to be
wanarp!WanNdisReceiveComplete+6, but of course we never arrived there since things went
wrong once the call was performed. Since the root cause of this issue is already explained in
section 5 on page 8, it is probably the best time for the reader to go back and have a quick
look at the information provided in that section and more specifically in figures 13 on page 9
and 14 on page 9.

6.4 Leaking NdisWanIp Device Context Kernel Pointer

As we have seen so far, in order to trigger this vulnerability it is necessary to match the
pointer to the device context area regarding NdisWanIp device. Since this is a value that we
can control from userland, an attacker could attempt to bruteforce it. However, this would
probably take some time to achieve and it could also have some impact in the stability of the
host. During our tests, both of the aforementioned situations occurred during bruteforcing
attempts.

Fortunately, there is a much better way to exploit this vulnerability without having to actu-
ally bruteforce this magic pointer value. In fact, we can either directly retrieve this value or
do a very small amount of attempts over a some data leaked from the kernel address space.
By using IOCTL 0x830020C4 we were able to leak this pointer from kernel back to userland
and fit it nicely in the input buffer for the next IOCTL that we discussed about in the previous
section. In reality, this IOCTL can be used to retrieve data from those "aPmI" tagged buffers.
The good thing, for us, is that the data returned can be up to a size of 0x2204 bytes which
means that if we declare a big enough output buffer in the call to the DeviceIoControl [2]
function then we might be able to leak extra data from kernel address space.

In fact, the data returned in that buffer from kernel space will include the valid pointer
to the "aPmI" buffer that holds information about the NdisWanIp device. In a few words,
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the handler for this IOCTL will basically go through the list of the context areas allocated
for each device bound to the intermediate driver under examination and will return this data
back to userland. Generally, a host wouldn’t have more than 1 or 2 extra adapters bound to
the intermediate driver, apart from the NdisWanIp which is always initialized, so the extra
memory leaked contains that useful information. With no adapters enabled the magic pointer
was located at offset 0x2004 (see figure 32) in the kernel leaked memory buffer, while with 1
adapter enabled the same pointer was located at offset 0x2008 in the output buffer.

However, in this particular case leaking the pointer from kernel was not necessary. These
pointers to the "aPmI" buffers are stored in a buffer inside the loaded EpFwndis kernel module
and the proprietary handler for the IOCTL 0x830020CC allows also to specify from where it
will read the input pointer. So in practice we could enumerate for the loaded drivers, get the
image base of the EpFwndis driver, add the RVA of that buffer and send this in the input buffer
as pointer from where the magic value will be read. This of course, makes the attack module-
version and build specific. Instead, by leaking the pointer using the method we previously
described is much more universal since we don’t need to know a specific RVA. This means
that we can use it to attack also other vulnerable NDIS 5.x intermediate drivers that might
directly accept the magic pointer from the input buffer instead of also accepting an address
from where to read this pointer.

So, in this case since we control both, we leak the magic pointer from kernel and we instruct
the driver to read it from the input buffer that we send through the call to the DeviceIoControl
API. Figure 32 demonstrates the leaked pointer from kernel.

Figure 32: Leaked pointer from kernel

6.5 Privilege Escalation

At this point, we have all the necessary pieces of the puzzle in place and it’s time for us to
enjoy the view. So, just to put everything together these are the steps used for exploiting a
vulnerable NDIS 5.x intermediate driver in Windows XP and Windows Server 2003:

1. Allocate NULL page.
2. Place a trampoline to our payload.
3. Leak kernel pointer to NdisWanIp device context area using IOCTL 0x830020C4.
4. Trigger a call to wanarp!WanNdisReceiveComplete using IOCTL 0x830020CC.
5. Execute payload.

As you can notice in the figure above, Windows explorer is running as ’Guest’ while the
processes related to our exploit are now running as ’SYSTEM’. This is because we used
an XP specific payload to parse the EPROCESS structures of all active processes in search
for the SYSTEM process. We know that this process has PID 4, so once found we steal
the pointer to its security access token and then we substitute the token pointer of the parent
exploit process which initially runs as ’Guest’ with that one. The rest is history since the child
processes of our exploit will also inherit the same token which now is the one belonging to
the SYSTEM process.

The following screenshot is taken from a Windows Server 2003 R2 virtual machine, where
we exploited the vulnerability through the ESET Endpoint Security product.
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Figure 33: Privilege Escalation in Windows XP SP3

Figure 34: Privilege Escalation in Windows Server 2003 R2

Notice that in the parent exploit process we also output the leaked pointer to the context
area allocated by EpFwndis for the NdisWanIp device.

7 V E N D O R S A F F E C T E D

Multiple products of the following vendors that are built for Windows XP and Windows
Server 2003 (R2 included) were affected by this issue and almost certainly many other prod-
ucts from other vendors are currently vulnerable. Vendors still supporting products originally
built for these Windows operating systems should revise immediately their code and make
sure that their NDIS 5.x intermediate drivers are not affected. In general NDIS 5.x inter-
mediate drivers that expose the aforementioned IOCTL codes are likely to be vulnerable to
privilege escalation.

1. ESET: CVE-2014-4973 (patched)
2. G Data: CVE-2014-9332 (patched)
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3. K7 Computing: CVE-2015-3444 (patched)
4. QuickHeal/Seqrite: CVE-2015-3899
5. eScan: Full Disclosure

8 C O N C L U S I O N

Vulnerabilities caused by design errors are definitely the most interesting to discover and
exploit. In this white paper we went through a series of things that when put together they
can be used by a malicious attacker to leverage his privileges and completely compromise the
affected host.

Since Windows Server 2003 is also affected, this can be of great importance since compro-
mising one host can potentially lead to compromise an entire or part of a corporate network
infrastructure. This was proved to be a great lesson regarding the levels of difficulty in ap-
plying computer systems security. In other words, this is how two completely independent
design errors from different vendors can generate an unpredictable, but exploitable situation
with a highly severe impact in the context of computer security.
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